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A Monte Carlo procedure is presented which allows the investigation of the relaxation 
process of a many-particle system from nonequilibrium states to the (thermal) equilib- 
rium state, including chemical reactions and internal degrees of freedom. As an applica- 
tion the time-dependent relaxation of (a) a lOO-particle system from a nonequilibrium 
state towards thermal equilibrium (Maxwell distribution), and (b) a chemical reacting 
system from a nonequilibrium state towards the chemical and thermal equilibrium 
state, is reproduced with this method. 

I. SIMULATION OF RELAXATION PROCESSES BY MONTE CARLO 

The relaxation of a many particle system from a nonequilibrium state to the 
(thermal- ) equilibrium state is described by the nonlinear Boltzmann equation. 
Small deviations from the thermal equilibrium state may be investigated by 
approximation methods. For the special case of a spatial homogeneous system 
it is possible to simulate the relaxation process for an arbitrary initial distribution 
on a computer. To construct the simulation mechanism we perform the following 
argumentation: 

The mean number of collisions C’ per unit volume and unit time is given by [l]: 

C’ = 
I s 

dv, dv,f(v, ,t)f(V2 7 t> utow Vl - v2 I> I Vl - v2 I, 

where f(v, t) dv is the density of particles with velocities in the range {v, v + dv) 
at time t, and crtot(j v2 - v1 I) is the total cross section for a collision between 
two particles of velocities v, and v2 . 

For the mean number of collisions per unit time in the spatial volume element v 
we can give expression (1) another form and may write 

c = ; c utoyl vi - Vk 1) 1 vi - VI, I, 
8.k 

(2) 
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where the summation indices i, k run over all particles in the volume element V. 
In this form the expression for C is even valid for a mixture of arbitrary particles. 

The mean time interval d t between two collisions in D is then 

At=+, (3) 

and we have 

and 

1 = At - C = C Wi,k 
i.k 

(4) 

utot(l vj - vk I) 1 vj - vk 1 
utot(l vj - vk I) 1 v$ - vk 1 - (5) 

The quantity wjk can be interpreted as the probability for a collision between 
the particles i and k. 

Equations (2), (3), (4), and (5) dictate us now the following Monte Carlo game: 
(1) Take at time t = 0 for a set of N particles the initial conditions: 

TABLE I 

Particle Velocity Mass Internal Energy 

1 VI 4 El 
2 72 m, EL? 

i Vi mi ii 

/i Vk mk -& 

i VN mN EN 

(2) Caldate out Of this table the quantities 2 = Ci.k otot(l v1 - Vk I) I vi - VI, /, 
w&l, , and 7 = l/Z, and increase the time t by 7. (Note that in this case we have 
to multiply T by 

Total number of particles in the system . 1o24 
Total density 

to obtain the time in seconds, if we measure the cross sections in units of barn.) 
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(3) Choose out of the distribution Wig a pair (i, k) of colliding particles and 
perform the collision due to the possible reaction mechanism resulting in 

(vim& ; VG@IJ (vi’mi’&‘; v,‘m,‘E,‘) 
-- 

belore the collision after the collision 

(4) Replace the values for the particles i and k in Table I by their values 
after the collision and go back to step (2). 

In this way we may follow the system over a large number of collisions and 
at prescribed timepoints we may scan the Table I for the quantities we are 
interested in (e.g., distribution of kinetic energies $mivi” or internal energies Ei 
of the particles). 

This procedure may work if we can deal with a system of a reasonable large 
number of particles. In practice however the available computer storage permits 
only to treat systems of about (in our case!) 100 particles. To compensate for 
this we sum over several (about 20-50) histories (each history starting from 
step (a)) and average over these histories at prescribed time points. 

Note, that by following the time-behaviour of one system and averaging the 
energy-distribution of this system in the equilibrium state over some time interval, 
we obtain the time-average. If, on the other hand, we follow the time-behaviour 
of more systems and average over the systems (if they are in equilibrium), we 
obtain the ensemble average. So, in principle, this method allows the separate 
investigation of time- and ensemble averages of a many particle system. 

II. APPLICATIONS 

(A) In a first application we consider the relaxation of a gas from a non- 
equilibrium state to the Maxwell distribution. 

As our system we take N(O) = 100 particles all of the same type. The mass 
of a particle is m = 1 mass unit (1O-24 g). As reactions we allow only elastic 
scattering, isotropic in the c.m. system with a constant scattering cross section 
of 1 b. In the initial nonequilibrium state we give each particle the same absolute 
value of velocity (v(O) = lo6 cm/set) with an isotropic distribution of their 
directions. 

30 system histories are constructed and the distribution of the kinetic energy 
at fixed time points is shown in Fig. la-c. The curves in Fig. 2 represent the time 
dependence of the number of particles &V(E, t) in an energy interval AE 
(= 0.05 [eV]) at some energy values. After t M 40 time units a stationary energy 
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FIG. 1. Distribution of the kinetic energy in a system of 100 particles at the time points 
t = 12 (a), 20 (b), and 40 (c) time units. To obtain the time in seconds one has to multiply t by 
(7.6 x 10IG)/Density * dN(E) is the number of particles in an energy interval LIE (= 0.05 [eV]) 
around the energy value E. 

160 



SIMULATION OF RELAXATION PROCESSES 161 
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FIG. 2. Time dependence of the number AN(Ei , r) of particles in an energy interval1 AE 
(= O.OS[eV]) around the energy values Et = 0.225 [eV], Es = 0.478 [eV], and Es = 0.728 [eVl. 
To obtain the time in seconds one has to multiply f by (7.6 x 1016)/Density. . 

distribution is established. This distribution should correspond to a Maxwell 
distribution for temperature kT determined by 

Average energy = 5 kT = Total energy Et 
number of particles = 7 * 

As the energy is conserved through the history, the total energy is equal to the 
total energy of the system in the initial state and is given by 

$0) . 1 (OP -imv . 

This leads us, therefore, to a temperature of kT = 0.208 [eV]. 
The calculated equilibrium distribution (for t = 50) and the Maxwell distribu- 

tion for kT = [0.208] eV are plotted in Fig. 3. It may be noted, that the calculated 
equilibrium distribution fits however well to a Maxwell distribution of kT = 0.18. 
The reason for this discrepancy might be due to the fact, that when constructing 
with the computer (using random number generator) the isotropic initial velocity 
distribution of the 100 particles, the sum of the velocities may not add up to 
zero but to a finite value v, . This means a nonzero translational velocity of the 
center-of-mass. But the kT-value of the Maxwell energy distribution for a particle 
system with v, # 0 is smaller than for a system with v, = 0 and has to be 
calculated out of 3kT/2 = (Et/N) - mvo2/2. This effect (v. # 0) will certainly 
increase if the number of particles decreases. However, we made no numerical 
investigation of this effect. The total calculation time for the 30 system histories, 
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100 PARTICLES 
t = 50 

FIG. 3. (a) Equilibrium distribution of the kinetic energy in the system 
time t = 50). (b) Maxwell distribution for kT = 0.208 [eV]. 

particles (at 

each history 50 time units with about 10 collisions per time unit, needed 12’ on 
an IBM 360165. 

(B) In a second application we take a gas-mixture of particles of type A, B, C, 
and D and allow for the reactions: 

A+BaC+D 

All collisions between particles other than (AB) or (CD) result in elastic scattering 
only isotropic in the c.m. system and with constant elastic scattering cross section 
of 1 b. 

For the collisions (AB) and (Co) we take also an energy independent total 
cross section atot of 1 b and separate 

utot = CT7 + (ss . 

a,. is the cross section for the reaction AB -+ CD or CD -+ AB (a,/atot = 0.5) 
and u, is the cross section for elastic scattering (a&tot = 0.5). 

The initial condition of the system is fixed by the following values: 

Mass in 
Type of Number of Mass Units Absolute Value of 
Particles Particles 10-24 g Initial Velocity 

I NY’ mZ 0:) [cm/set] 

A 50 1 106 
B 50 4 103 
C 0 2 0 
D 0 3 0 
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The build-up of the reaction product C and the decay of the number of type A 
particles is shown in Fig. 4a and b. The time dependence of the kinetic-energy 
distribution for the different species A, B, C, and D shows a similar behaviour 
as that shown in Fig. la-c. The equilibrium distribution of the kinetic energies 
(which is the same for all particle types) is plotted in Fig. 5 and should correspond 
to a Maxwell distribution of temperature kT defined by 

which results in kT = 0.104 [eV]. 

24 
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FIG. 4. (a) Number of C-particles at time produced in the reaction A + Be C + D 
when the system started with 5OA-particles aqd SOB-particles at tim t = 0. To obtain the time 
in set one has to multiply t by (1.2 x lV?)/Density. (b) Decay of the number of A-particles as a 
function of time in the reaction A + B e C + D when the system started with SOA-particles 
and SOB-particles at time t = 0. Time in set is obtained by multiplying t by (1.2 x lW’)/Density. 
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FIG. 5. (a) Equilibrium distribution of the kinetic energy of B- and D-particles (at t = 50). 
(b) Maxwell distribution for kT = 0.104 [eV]. 

Again a discrepancy exists between the calculated equilibrium distribution and 
the corresponding Maxwell distribution as shown in Fig. 5. A better fit is obtained 
for a temperature kT = 0.08 [eV]. 

The calculation was again done for 30 system histories, each history 50 time 
units with about 10 collisions per time unit, and needed 10’ on an IBM 360/65. 

III. CONCLUSIONS 

A Monte Carlo procedure is presented which allows the investigation of the 
relaxation process of many-particle systems from nonequilibrium states to the 
(thermal) equilibrium state, including chemical reactions and internal degrees of 
freedom. The interaction between the particles occurs via two particle collisions 
and the physics of a single collision is put into the reaction cross sections. 

Working only with the concept of the cross sections and the classical collision 
mechanics (momentum and energy conservation law, to perform a collision) it 
was possible to reproduce the time-dependent relaxation of (a) a loo-particle 
system from a nonequilibrium state towards thermal equilibrium (Maxwell 
distribution), and (b) a chemical reacting system from a nonequilibrium state 
towards the chemical and thermal equilibrium state. 

The programme as such is rather simple. The main problem consists in 
compiling the (energy dependent) cross sections for the different chemical reactions 
or inelastic scattering processes for the investigation of the relaxation of internal 
degrees of freedom. 
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APPENDIX: COLLISION ROUTINE 

We consider the following reactions: 

Before the Collision 

vn,M 
m2W2 

After the Collision 

mAyA& 
mBV& 

The energy available for the reaction before the collision in the c.m. system 
is given by 

with 

EIp = El + E, + !$ (1) 

PO = P I VI - vz I and p = mlmz 
m,+m, * (2) 

The total kinetic energy available for the reaction products after the collision 
in the c.m. system: 

2 

with 

.g = & - EA - EB = -&- 
2P’ 

(3) 

p’ = mAmB 

mA f MB ’ 
(4) 

and pO’ is the absolute value of the momentum of the particles after the collision 
in the cm. system. 

The absolute values of the velocities &,A and DOB of the reaction products after 
the reaction in the c.m. system are then given by 

UOA = $ and vOB = $ . (5) 

If n is the direction of the relative velocity of the reaction products after the 
reaction in the c.m. system (determined out of the scattering law), we have for 
their velocities 

VOA = vOBn 

and (6) 
YoB = - vOBn, 

and for their velocities VA and vB in the Laboratory system, 

VA = VOA + c 
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and 

where 

(7) 
VLI = VOB + c, 

c= mlh + mzvz 
ml -f- m2 

(8) 

is the velocity of the center-of-mass (c.m.) in the Laboratory system. 
The reaction cross sections determine the type of reaction and give us the 

quantities: mAEA , mBEB , and n. The velocities vA and v, of the reaction products 
after the collision in the L-system have to be found out of expressions (7). 

Note that the unit vector n for the relative velocity refers to the c.m. system 
and has to be transformed into the Laboratory system to obtain vA and v, . 

The transformation formulae are found with the help of Fig. 6 (laboratory 
system {i&}). 

L-SYSTEM CM.-SYSTEM 

X 

FIG. 6. Choice of coordinate systems (L = Laboratory system, c.m. = center-of-mass 
system) for the derivation of the transformation formula for the components of n from the c.m. 
system to the L system. 

e8(0, #) : Direction of relative velocity of the colliding particles before the collision. 
The unit vectors {e, , e, , e3j form the base of an orthogonal coordinate system 
with e2 // to the (il , iz) plane. 

The direction n(@, v) for the relative velocity after the collision in the system 
{ek} is found out of the scattering law. Then we have 

(ilea) = cos $ sin 0, 

(&es) = sin f$ sin 8, 

(i3e3> = cos 8, 

(i,e,) = -COS 4 cos 8, 

(i,e,) = -sin + cos 0, 

(i3e& = sin 8, 

(&et) = sin 4, 

(i2e2) = -cos 4, 

(i,e,) = 0. 
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The components n,’ of n in the {eJ system are given by: 

nl ’ = cos ip sin I!J 3 
n2 ’ = sin q3 sin 8 n = C n,‘e, 
n3 ’ = cost9 i=l 

and the components nk of II in the Laboratory system are finally given by: 
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